Affiliation:
1. Swansea University
2. Durham University
3. National Scientific and Technical Research Council
4. National University of La Plata
5. Vrije Universiteit Brussel
Abstract
Integrable field theories in two dimensions are known to originate as defect theories of 4d Chern-Simons and as symmetry reductions of the 4d anti-self-dual Yang-Mills equations. Based on ideas of Costello, it has been proposed in work of Bittleston and Skinner that these two approaches can be unified starting from holomorphic Chern-Simons in 6 dimensions. We provide the first complete description of this diamond of integrable theories for a family of deformed sigma models, going beyond the Dirichlet boundary conditions that have been considered thus far. Starting from 6d holomorphic Chern-Simons theory on twistor space with a particular meromorphic 3-form \OmegaΩ, we construct the defect theory to find a novel 4d integrable field theory, whose equations of motion can be recast as the 4d anti-self-dual Yang-Mills equations. Symmetry reducing, we find a multi-parameter 2d integrable model, which specialises to the \lambdaλ-deformation at a certain point in parameter space. The same model is recovered by first symmetry reducing, to give 4d Chern-Simons with generalised boundary conditions, and then constructing the defect theory.
Funder
Royal Society
Science and Technology Facilities Council
UK Research and Innovation