Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model

Author:

Bastianello Alvise12ORCID,Doyon Benjamin3,Watts Gerard3ORCID,Yoshimura Takato3

Affiliation:

1. International School for Advanced Studies

2. National Institute of Nuclear Physics (at SISSA)

3. King's College London

Abstract

Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz of quantum models, which we extend to generalized Gibbs ensembles (GGEs). In general, GHD must take into account both solitonic and radiative modes of classical fields. We observe that the quasi-particle formulation of GHD remains valid for radiative modes, even though these do not display particle-like properties in their precise dynamics. We point out that because of a UV catastrophe similar to that of black body radiation, radiative modes suffer from divergences that restrict the set of finite-average observables; this set is larger for GGEs with higher conserved charges. We concentrate on the sinh-Gordon model, which only has radiative modes, and study transport in the domain-wall initial problem as well as Euler-scale correlations in GGEs. We confirm a variety of exact GHD predictions, including those coming from hydrodynamic projection theory, by comparing with Metropolis numerical evaluations.

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Landau-Lifschitz Magnets: Exact Thermodynamics and Transport;Physical Review Letters;2024-09-04

2. IT from QUBIT or ALL from HALL?;Lithuanian Journal of Physics;2024-07-02

3. New Classical Integrable Systems from Generalized TT¯ -Deformations;Physical Review Letters;2024-06-17

4. Navier-Stokes Equations for Low-Temperature One-Dimensional Quantum Fluids;Physical Review Letters;2024-06-11

5. Three-stage thermalization of a quasi-integrable system;Physical Review Research;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3