Relative anomalies in (2+1)D symmetry enriched topological states

Author:

Barkeshli Maissam1,Cheng Meng2

Affiliation:

1. University of Maryland, College Park

2. Yale University

Abstract

Certain patterns of symmetry fractionalization in topologically ordered phases of matter are anomalous, in the sense that they can only occur at the surface of a higher dimensional symmetry-protected topological (SPT) state. An important question is to determine how to compute this anomaly, which means determining which SPT hosts a given symmetry-enriched topological order at its surface. While special cases are known, a general method to compute the anomaly has so far been lacking. In this paper we propose a general method to compute relative anomalies between different symmetry fractionalization classes of a given (2+1)D topological order. This method applies to all types of symmetry actions, including anyon-permuting symmetries and general space-time reflection symmetries. We demonstrate compatibility of the relative anomaly formula with previous results for diagnosing anomalies for \mathbb{Z}_2^{T}2T space-time reflection symmetry (e.g. where time-reversal squares to the identity) and mixed anomalies for U(1) \times \mathbb{Z}_2^{T}U(1)×2T and U(1) \rtimes \mathbb{Z}_2^{T}U(1)2T symmetries. We also study a number of additional examples, including cases where space-time reflection symmetries are intertwined in non-trivial ways with unitary symmetries, such as \mathbb{Z}_4^{T}4T and mixed anomalies for \mathbb{Z}_2 \times \mathbb{Z}_2^{T}2×2T symmetry, and unitary \mathbb{Z}_2 \times \mathbb{Z}_22×2 symmetry with non-trivial anyon permutations.

Funder

Alfred P. Sloan Foundation

National Science Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3