Bounds on the entanglement entropy by the number entropy in non-interacting fermionic systems

Author:

Kiefer-Emmanouilidis Maximilian12,Unanyan Razmik2,Sirker Jesko1,Fleischhauer Michael2

Affiliation:

1. University of Manitoba

2. University of Kaiserslautern

Abstract

Entanglement in a pure state of a many-body system can be characterized by the Rényi entropies S^{(\alpha)}=\ln\textrm{tr}(\rho^\alpha)/(1-\alpha)S(α)=lntr(ρα)/(1α) of the reduced density matrix \rhoρ of a subsystem. These entropies are, however, difficult to access experimentally and can typically be determined for small systems only. Here we show that for free fermionic systems in a Gaussian state and with particle number conservation, S^{(2)}S(2) can be tightly bound—from above and below—by the much easier accessible Rényi number entropy S^{(2)}_N=-\ln \sum_n p^2(n)SN(2)=lnnp2(n) which is a function of the probability distribution p(n)p(n) of the total particle number in the considered subsystem only. A dynamical growth in entanglement, in particular, is therefore always accompanied by a growth—albeit logarithmically slower—of the number entropy. We illustrate this relation by presenting numerical results for quenches in non-interacting one-dimensional lattice models including disorder-free, Anderson-localized, and critical systems with off-diagonal (bond) disorder.

Funder

Deutsche Forschungsgemeinschaft

Natural Sciences and Engineering Research Council

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3