Affiliation:
1. Federal University of Technology Owerri
2. University of Calabar
3. Federal University of Technology
Abstract
The potential of Calcinated and uncalcinated zinc oxide as effective Photocatatlyst for the degradation of malachite green dye, MG from aqueous medium using UV light has been identified. The photocatalysts were characterized using scanning electron microscope, SEM and x-ray diffraction, XRD. The SEM investigations of the calcinated ZnO revealed highly dispersed nanomaterials and the particles were of nanometer size in agreement with the XRD result. The uncalcinated zinc oxide, ZnO revealed some pronounced nanoparticles. The degradation of MG by the photocatalyst was found to be influenced by adsorbent loading and irradiating time. The optimum degradation was obtained at 0.5g catalyst loading of both calcinated and uncalcinated zinc oxide which is 98.48% and 96.31 % respectively at 150 minutes. The degradation kinetics conformed to the pseudo-first-order kinetic model. The present study showed that calcinated and uncalcinated zinc oxide ZnO can be effectively used as efficient photocatalyst for the degradation of Malachite green dyes from aqueous solutions and effluents.
Publisher
AOA Academic Open Access Ltd.
Subject
Psychiatry and Mental health,Neuropsychology and Physiological Psychology
Reference23 articles.
1. T. Robinson et al., Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative, Bioresource Technology. 77(3) (2001) 247-275.
2. A. Ezgi, B. Mufit, Y. Mustafa, Removal efficiency of a calyx [4] arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines, Journal of Hazardous Materials. 162 (2008) 960-966.
3. M. Mehra, T.R. Sharma, Photo catalytic degradation of two commercial dyes in aqueous phase using photo catalyst TiO2, Advances in Applied Science Research. 3(2) (2012) 849-853.
4. E. Fosso-Kankeu et al., Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes, Journal of Industrial and Engineering Chemistry. 22 (2015) 171-178.
5. G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource technology. 97(9) (2006) 1062-1070.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献