Abstract
Online social media plays an important role during real world events such as natural calamities, election s, social movements etc. Since the social media usage has increased, fake news has grown. The social media is often used by modifying true news or creating fake news to spread misinformation. The creation and distribution of fake news poses major threats in several respects from a national security point of view. Hence Fake news identification becomes an essential goal for enhancing the trustworthiness of the information shared on online social network. Over the period of time many researcher has used different methods, algorithms, tools and techniques to identify fake news content from online social networks. The aim of this paper is to review and examine these methodologies, different tools, browser extensions and analyze the degree of output in question. In addition, this paper discuss the general approach of fake news detection as well as taxonomy of feature extraction which plays an important role to achieve maximum accuracy with the help of different Machine Learning and Natural Language Processing algorithms. Keywords—Fake News Detection, Natural Language Processing, Online Social Network, Machine Learning, Sentiment Analysis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献