Chemokines in allergic asthma inflammation

Author:

Sulfiana SulfianaORCID,Iswanti Febriana CaturORCID

Abstract

Asthma is the most frequent noncommunicable disease and one of the leading causes of years lived with disability. Asthma has a severe impact on a patient's life, being able to disturb the activities of both children and adults. The morbidity and mortality of asthma may depend on the severity and progressiveness of the symptoms experienced by the patient. Different and complex pathomechanisms underline the pathology of asthma, in which the regulation of innate and adaptive immune responses plays a role. There is a complex interaction between immune cells including chemokines involved in the pathogenesis of asthma. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. This review article outlines the main role of chemokines in inflammatory reactions that occur in allergic asthma, based on the latest literature studies that have been published previously. The allergic reaction in asthma expresses various chemokines and their receptors. Chemokines including eotaxins (CCL11, CCL24, and CCL26), CCL2, CCL5, CCL17, and CCL22 regulate immune cells that under pathological conditions travel to the inflammatory site, mainly in the lung, to protect the body from pathogen invasion. Chemokines are released by a number of immune cells such as monocytes, dendritic cells, mast cells, and epithelial cells in the airway. The biological effects of chemokine production are enhanced by secreted cytokines when an allergic reaction occurs in asthma, such as IL-4, IL-5, and IL-13. Chemokines cause an accumulation of different inflammatory cells at the site of inflammation, which ultimately results in tissue damage to the airway. The inhibition of the reactions evoked by the interaction between chemokines and their receptors is considered a candidate for the development of potent therapeutic drugs for asthma in the future.

Publisher

Universa Medicina

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3