An Automatic Non-Destructive External and Internal Quality Evaluation of Mango Fruits based on Color and X-ray Imaging with Machine Learning and Deep Learning Based Classification Models

Author:

Vani Ashok ,Bharathi R K ,Sheela N

Abstract

Quality evaluation of food products, agricultural produce to be specific, has gained momentum from past few decades due to the increased awareness among consumers across the world.  This has resulted in the increased emphasis on the development and use of quality assessment techniques in food industry. Moreover, there is a need to automate the quality monitoring of agricultural produce like fruits and vegetables which is otherwise done manually in developing countries hence labor intensive, time consuming and subjective in nature. This paper presents an empirical analysis to build a rapid, robust, real-time, non-destructive computer vision based quality assessment model for mango fruits. The work employs the automatic disease classification of mango fruits based on machine and deep learning models. Firstly, the dataset of colored mango fruits images with 2279 images falling into three classes and another dataset of soft X-ray images of mango fruits with 572 images belonging to two quality classes are developed for detecting external and internal defects, respectively. The multilayer perceptron neural network (MLP NN) with two hidden layers, which may be considered as the starting point for deep learning technique, is proposed as machine learning model to classify the color images of mango fruits into one of three external quality classes with 95.1% accuracy and also to classify the soft X-ray images into two internal quality classes with 97.5% accuracy. In order to step out of feature engineering, actual deep learning convolutional neural network (CNN) models, a customized CNN model and pre-trained CNN models, VGGNet (VGG16) and DenseNet121 were also explored for mango disease classification. The maximum validation accuracy of custom CNN was found to be with 91.52% and 98.7% for color and augmented X-ray images, respectively. The classification accuracy of pre-trained models were found to be reasonably good for the color images but exhibited high variability in results and made it difficult to draw a general conclusion for the proposed datasets. However, the proposed MLP NN model based on few basic intensity and geometric features and also the proposed customized CNN model were found to be the best models and they outperform the state of the art reported in the literature.

Publisher

IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3