Rumex Weed Classification Using Region-Convolution Neural Networks Based-Colour Space Information

Author:

Nazal Saleh,Al-Dulaimi KhamaelORCID

Abstract

Weed detection is considered the gold standard in smart agriculture field. An automated detection of weedprocedure is a complicated task, specifically detection of Rumex weed due to different real-world environmental conditions, including illumination, occlusion, overlapped, growth stage, and colours. Few works have doneto classify Rumex weed using machine learning. However, the performance is still not at the level required foragriculture communities and challenges have not been solved. This work proposes Region-Convolutional NeuralNetworks (RCNNs) and VGG16 model based on colour space information to classify Rumex weed from grassland.This paper is investigated the effectiveness of our proposed method over real-world images under different conditions. The findings have shown that the proposed method superior comparing with other AI existing techniques.The results demonstrate that the proposed method has an excellent adaptability over real-world images.

Publisher

IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3