Gray-level Co-Occurrence Matrix application to Images Processing of crushed Olives fruits.

Author:

Márquez Antonio Jiménez,Beltrán Maza Gabriel

Abstract

This paper shows the results obtained from images processing digitized, taken with a 'smartphone', of 56 samples of crushed olives, using the methodology of the gray-level co-occurrence matrix (GLCM). The values ​​of the appropriate direction (θ) and distance (D) that two pixel with gray tone are neighbourhood, are defined to extract the information of the parameters: Contrast, Correlation, Energy and Homogeneity. The values ​​of these parameters are correlated with several characteristic components of the olives mass: oil content (RGH) and water content (HUM), whose values ​​are in the usual ranges during their processing to obtain virgin olive oil in mills and they contribute to generate different mechanical textures in the mass according to their relationship HUM / RGH. The results indicate the existence of significant correlations of the parameters Contrast, Energy and Homogeneity with the RGH and the HUM, which have allowed to obtain, by means of a multiple linear regression (MLR), mathematical equations that allow to predict both components with a high degree of correlation coefficient, r = 0.861 and r = 0.872 for RGH and HUM respectively. These results suggest the feasibility of textural analysis using GLCM to extract features of interest from digital images of the olives mass, quickly and non-destructively, as an aid in the decision making to optimize the production process of virgin olive oil.

Publisher

IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3