Author:
Mentari Mustika,Sari Yuita Arum,Dewi Ratih Kartika
Abstract
Abstrak
Seiring perkembangan teknologi dilakukan otomatisasi deteksi kanker kulit melalui citra dermoscopy. Pengambilan informasi fitur citra dermoscopy terganggu dengan outlier dan overfitting, karena faktor jenis kulit, penyebaran kanker yang tidak merata atau kesalahan sampling. Penelitian ini mengusulkan deteksi kanker kulit melanoma dengan mengintegrasikan metode fuzzy K-Nearest Neighbour (FuzzykNN), Lp-norm dan Linear Discriminant Analysis (LDA) untuk mengurangi outlier dan overfitting. Masukan berupa citra warna RGB yang dinormalisasi menjadi RGBr. Reduksi dimensi dengan LDA menghasilkan fitur dengan nilai eigen paling menonjol. LDA pada penelitian ini menghasilkan dua fitur paling menonjol dari 141 jenis fitur, yaitu wilayah tumor dan minimum wilayah tumor channel R. Kemudian dilakukan klasifikasi FuzzykNN dan metode pengukur jarak Lp-norm. Penggunaan metode LDA dan Lp-norm dalam proses klasifikasi ini mengatasi terjadinya overfitting. Akurasi yang dihasilkan metode LDA-fuzzykNN Lp Norm, yaitu 72% saat masing-masing nilai p dan k = 25. Metode gabungan ini terbukti cukup baik dari pada metode yang dijalankan terpisah.
Kata kunci: melanoma, fuzzy, KNN, Lp-norm, LDA.
Abstract
As the advancement of technology skin cancer detection need to be automated with the use of dermoscopy image. Outlier and overfitting are the problem in feature extraction of dermoscopy image, this can be caused by skin type, uneven cancer distribution or sampling error. This study proposed melanoma skin cancer detection by fuzzy K-Nearest Neighbour (FuzzykNN) with Lp-norm integrated with Linear Discriminant Analysis (LDA) to reduce the problem of outlier and overfitting. Input used in this study are images with RGB channel, then it adapted to RGBr. Dimensional reduction with LDA result in features with highest eigen value. LDA in this research select 2 discriminant, they are tumor area and minimum tumor area in R channel. This features then classified by fuzzykNN with Lp-Norm. Integration of LDA and Lp-norm in classification can reduce the problem of overfitting. This study results in 72% accuracy when the value of p and k are 25. Integration of LDA and fuzzykNN with Lp-norm has better result than unintegrated method.
Key word: melanoma, fuzzy, KNN, Lp-norm, LDA.
Publisher
Universitas Pesantren Tinggi Darul Ulum (Unipdu)
Subject
Decision Sciences (miscellaneous),Artificial Intelligence,Information Systems and Management,Information Systems,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Skin Cancer Classification Systems Using Convolutional Neural Network with Alexnet Architecture;Proceedings of the 2nd International Conference on Electronics, Biomedical Engineering, and Health Informatics;2022