In Vitro Degradation of Silk Fibroin/Hyaluronic Acid Composite Hydrogels

Author:

Chen Shixian1,Yang Wenjing1,Yan Shuqin1,Han Guocong1,Zhang Qiang1

Affiliation:

1. School of Textile Science and Engineering, Wuhan Textile University

Abstract

Protein-polysaccharide scaffolds are usually used in tissue engineering; however, matching regeneration rate with healing modes is a challenge because of unpredictable scaffold degradation profiles. We investigated the effect of the blend ratio on degradation behavior of silk fibroin (SF)/hyaluronic acid (HA) hydrogels by varying weight ratios. The hydrogels were incubated in 1 U/mL collagenase IA at 37 °C to create an in vitro model of proteolytic degradation. Samples were harvested at designated time points up to 21 days and scanning electron microscopy (SEM), digital photos, and mass loss were investigated. Control samples were incubated in phosphate-buffered saline. The results showed regular and controllable degradability. The higher the HA content, the stronger the degradability of the hydrogel. When the HA content increased from 20% to 40%, the mass loss of the hydrogel increased from 22% to 35% after 21 days of degradation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3