Author:
Zhang Wei,Hao Shang,Chen Mingyang,Yang Bo,Xie Yuan,Zhang Xingmin,Yao Jiming
Abstract
Superhydrophobic surfaces have attracted attention due to their hydrophobic, self-cleaning, anti-icing, and oil/water separation properties. The present study used a nonwoven fabric as a flexible substrate and constructed a high-adhesive superhydrophobic surface by coating the fabric
with polydimethylsiloxane (PDMS)-co -polymethyl hydrogen siloxane (PMHS) polymers and embedding mesoporous SiO2 nanoparticles. The water contact angle (WCA) of the superhydrophobic surface was up to 165.2° at a PDMS to PMHS ratio of 4:1. The adhesion to deionized water
was 99.7 μN. High hydrophobicity was maintained, even after sandpaper abrasions and flowing water impact. The surface was resistant to acid, alkali, brine, strong oxidation, and heavy metal solutions. The coating exhibited anti-icing and oil/water separation properties. This study provides
a facile and effective method for constructing multifunctional superhydrophobic coatings on flexible substrates.
Subject
Materials Chemistry,Polymers and Plastics,Process Chemistry and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献