Accessibility of green spaces in the conditions of a compact city: case study of Kyiv

Author:

Shyshchenko Petro1ORCID,Havrylenko Olena1ORCID,Tsyhanok Yevhen1ORCID

Affiliation:

1. Taras Shevchenko National University of Kyiv

Abstract

Purpose. The goal of the study is to develop an algorithm for assessing urban green space (UGS) accessibility in conditions of a compact city with high-density development by the example of Kyiv. Methodology. The research technique provides for spatial and quantitative analysis of UGS distribution within city limits by using OpenStreetMap, Google Map geospatial data and the QGIS software. The pedestrian accessibility to greenery is determined as the distance walked from the residential building to the nearest green space. If the average speed of walking of all age groups is taken to be 3 km/hr, then 10 minutes are needed to cover a distance of 500 m, and 20 minutes, for 1,000 m. To account for curved paths and obstacles (buildings, fences, motorways), UGS were surrounded with buffer areas 300 m and 700 m wide. This equals the walking distances of 500 and 1,000 m respectively. Results. We plotted on the map all available UGS within Kyiv limits, determined their total area and found a very uneven spatial UGS distribution in different city districts. Then we found the average provision of each Kyiv resident with greenery of all kinds, including not only parks, mini parks, and urban forests, but also cemeteries, flowerbeds and grass lawns, separate street bushes and trees, and roadside hedgerows. Based on the data of the number of buildings and the population density within Kyiv’s residential development area, we calculated the actual provision of Kyiv residents with UGS of all kinds, and with greenery suitable for daily recreation. In so doing, we found that the provision of UGS, where short-term recreation is possible, is significantly smaller in area per head of population as compared to an identical indicator calculated for greenery of all kinds. This is confirmed by the built map charts. Using the buffer approach, we determined the shortest distances to be covered to reach a UGS nearest to a residential building. Independently, we measured pedestrian accessibility to any green cover in Kyiv and UGS accessibility for public use, which are suitable for daily recreation in different Kyiv micro districts. The findings yielded a significant difference in these indicators. According to the calculations of UGS accessibility of all kinds, Kyiv really looks like a “green” city where almost in all the developed territories the distance to the nearest UGS is within 1,000 m. However, an assessment of the accessibility to greenery suitable for short-term daily recreation is indicative of a deficiency of UGS in at least eleven residential complexes in the city. All the locations with different UGS accessibility are also plotted on relevant map charts. Scientific novelty. The study has shown that only 45.4% of Kyiv residents are provided with high pedestrian accessibility within a distance of 500 m to UGS for daily recreation. The residents of different age and social groups who, within a 1-km radius, have no access at all to any recreation site make up 15.5% of Kyiv residents. Substantial disproportions in UGS accessibility were also found in different administrative districts and residential complexes. This is indicative that the management of the entire city’s green infrastructure is not perfect. Practical importance. The algorithm for assessing green space accessibility that was developed and tested for Kyiv can be used for any compact city. This will help city planners to identify accurately the micro districts and other locations requiring priority planting of greenery.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Materials Science

Reference27 articles.

1. Where in Kyiv is the closest to parks and squares? LUN City (2019). Available at: https://misto.lun.ua/ozelenennya

2. Zibtseva O., Yukhnovskyi V. (2019). Analytical evaluation of developed norms for greening of cities. Biological Resources and Nature Management, 11(5–6), 131–140. http://dx.doi.org/10.31548/bio2019.05.014

3. LUN City (2020). Available at: https://misto.lun.ua/#rec279021961

4. Ocheretnyj V., Potapova T., Kuzmina D., Solohor V. (2017). A modern tendency of reducing the space of green plants in the world. Modern Technology, Materials and Design in Construction, 2, 69-76.

5. Planning and development of territories. DBN B.2.2-12: 2019. Kyiv, Ministry of Regional Development of Ukraine (2019). Available at: https://dreamdim.ua/wp-content/uploads/2019/07/DBN-B22-12-2019.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3