The system for near-real time air pollution monitoring over cities based on the Sentinel-5P satellite data

Author:

Savenets Mykhailo1ORCID,Oreshchenko Andrii1ORCID,Nadtochii Liudmyla1ORCID

Affiliation:

1. Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract

Introduction. Air pollution heterogeneity and rapid urbanization impose numerous constraints on available near-surface air quality monitoring. The solution for effective warning comes with the integration of different data, including remote sensing. Satellite data cannot answer whether dangerous pollution levels are observed; however, it provides a complete picture and may detect air pollution transportation towards or away from cities. The possibilities for effective near-real time (NRTI) monitoring have significantly improved with the launch of the Sentinel-5P satellite. The study aimed to describe the developed system for NRTI air pollution monitoring over Kharkiv, Kryvyi Rig, Kyiv, and Odesa based on NO2 and CO data derived from the Sentinel-5P satellite. Data and methodology. The NRTI System was developed for tropospheric NO2 and total CO column number densities based on the Sentinel-5P NRTI products. After satellite scanning of Ukrainian territory, the NRTI System goes live in 2-3 hours. It is fully automatic, and modules were written using Python, VB.NET, and batch-scripting. Results. The NRTI System includes four main phases: preparatory, source data downloading, processing and post-processing with visualization, archiving, and result distribution among users. Source data filtering with a quality assurance index and downscaling with linear kriging interpolation were developed. The output of the NRTI System is data in regular grids with a spatial resolution of 0.02o×0.02o. Based on the NRTI System work during October – December 2021, we conducted preliminary analyses to understand the possibilities of data usage. Higher NO2 content was observed in Kyiv and Kharkiv, where traffic emissions play a crucial role in air quality worsening. The use of daily time series allowed the detection of an increase in NO2 variance during the heating season, as well as plume distribution from cities to rural areas due to the prevailing wind. CO content is more homogeneous; however, higher values were observed in industrial Kryvyi Rig and Odesa. It is emphasized the huge impact of shipping CO emissions on air quality in Odesa. The temporal averaging of the NRTI System output allowed us to define the most polluted districts within the cities of interest. We intend to continue developing the presented NRTI System and develop the same algorithms for all cities with populations greater than 500 000 people in order to provide operational air pollution monitoring based on satellite data.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3