Application of georadars for detecting subsurface defects in layers of non-rigid road pavements

Author:

Abstract

The relevance of the problem under consideration is a consequence of the high cost of classical methods of pavement inspection. At the same time, the use of modern pulse georadars allows to ensure a relatively low cost of monitoring the current state of highways, since it allows to obtain georadar data when a laboratory vehicle is moving at the speed of a traffic flow. This minimizes the role of costly and time-consuming operations such as coring or cutting. The purpose of this work is to improve the methods for obtaining primary GPR data, which were previously proposed by the authors to improve the accuracy and reliability of the results of processing pulsed GPR signals. Materials and methods. When processing model and experimental data, first of all, modern theoretical methods of processing pulse signals from ground penetrating radars, as well as methods of computer modeling, were used. Results. Based on the analysis of the factors that determine the key features of GPR signals, a signal calibration method has been proposed, which makes it possible to increase the reliability of detecting such defects in layers of non-rigid road pavement made of monolithic materials, such as loss of interlayer adhesion, or identification of thin layers from an electrophysical point of view in multilayer media. Conclusions. Combining the signal calibration method together with the previously proposed approach to detecting the loss of interlayer adhesion and the performed numerical simulation made it possible to increase the reliability of the procedure for non-destructive testing of road pavements and other building structures. During the work, laboratory experiments were performed on model structures. The analysis of the obtained data was performed using the developed software GeoVizy.

Publisher

V. N. Karazin Kharkiv National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3