Improving the Effectiveness of Learning with the Help of Neurocomputer Interface

Author:

Ronzhes Olena1ORCID

Affiliation:

1. V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

The article considers modern technologies for reading signals from the human brain and nervous system and selects the optimal technology to improve the efficiency of adult learning with the help of a neurocomputer interface. Existing brain-computer interfaces (BCI) technologies can be divided into invasive and non-invasive. The first, invasive BCIs, are neuroimplants in certain parts of the brain that work on the basis of electrocorticography (ECOG) or intracranial EEG (iEEG) technology and do not require deep intervention in brain structures; or another invasive BCIs, based on intracortical recording technology using implants with electrodes placed in brain closer to the signal source, and required more complicate operation. The second, non-invasive BCI, reads signals from the brain and nervous system and is based on electroencephalogram (EEG). Compared to invasive BCIs with their more accurate signal, transcranial BCIs communicate with the brain through the skull bones, muscles, and all tissues. Their use does not require intervention in the human body. To increase the effectiveness of training, there was chosen a physiotherapeutic method of transcranial electrical stimulation (TES) in combination with a braincomputer interface based on electroencephalography (EEG), as the most accessible non-invasive method of exposure and feedback due to BCI without known side effects to mental functions and personality. The use of brain-computer interfaces, in particular transcranial electrical stimulation in combination with electroencephalography, increases cognitive abilities in learning, including multitasking. This method can also be used to increase the effectiveness of human assimilation of the necessary new digital environments and is used not only for training complex professions, but also for the masses. Side effects on higher mental functions and personality have not been sufficiently studied to recommend or avoid the use of neurocomputer interfaces for widespread use in education.

Publisher

V. N. Karazin Kharkiv National University

Subject

Religious studies,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3