Forced liquid vibrations in prismatic tanks under vertical and horizontal loads

Author:

Abstract

The method of studying forced vibrations of a liquid in rigid prismatic tanks partially filed by a liquid is offered. It is supposed that the liquid is an ideal and incompressible one, and its motion, caused by the action of external influences, is irrotational. In these assumptions, there exists a velocity potential that satisfies the Laplace equation. The boundary value problem for this potential is formulated. On the wetted surfaces of the tank the non-penetration conditions are chosen. On the free surface of the liquid, the kinematic and static conditions are specified. The static condition consists in the equality of pressure on the free surface to atmospheric one. The liquid pressure is determined from the Cauchy-Lagrange integral. To formulate the kinematic condition, an additional unknown function is introduced, which describes the motion of the free surface. The kinematic condition is the equality of the velocity of the liquid, which is described by the velocity potential, and the velocity of the free surface itself. These modes of free vibrations are used as a system of basic functions in solving problems of forced fluid vibrations in reservoirs. Unknown functions are presented as series of the basic functions. The coefficients of these series are generalized coordinates. Periodic excitation forces acting in the vertical and horizontal directions are considered. If vertical excitation is studied, this leads to appearance of additional acceleration. Here we obtain a system of unbounded differential equations of the Mathieu type. This allows us to investigate the phenomena of parametric resonance. The effect of parametrical resonance is considered when the vertical excitation frequency is equal to double own frequency of liquid vibrations Dependences of change in the level of free surface via time under both separate and mutual action of horizontal and, vertical forces of are obtained. The phase portraits of a dynamic system with indication of resonances are presented. The method allows us to carry out the adjustment of undesired excitation frequencies at the design stage at reservoir producing in order to prevent the loss of stability.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference13 articles.

1. R.A. Ibrahim. Liquid Sloshing Dynamics. Cambridge University Press, New York, 2005.

2. Eselev E., Gnitko V., Strelnikova E. Intrinsic oscillations of high pressure vessels when interacting with a liquid. Institute of Mechanical Engineering problems. №1, 2006, pp.105-118.

3. Gnitko V., Naumenko V., Rozova L., Strelnikova E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International, 17(1), pp. 75-87, 2016.

4. Gnitko, V., Naumemko, Y., Strelnikova E. Low frequency sloshing analysis of cylindrical containers with flat and conical baffles, International Journal of Applied Mechanics and Engineering, 22 (4), pp.867-881, 2017.

5. Strelnikova E., Kriutchenko D., Gnitko V. Liquid Vibrations in Cylindrical Quarter Tank Subjected to Harmonic, Impulse and Seismic Lateral Excitations, Journal of Mathematics and Statistical Science, V. 5, pp.31-41, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3