Electric Field Enhancement by Gold Nano-Sphere and Its Clusters

Author:

Kushwaha P.K.ORCID,Singh K.Y.ORCID,Mahor Himmat Singh,Singh Pramod KumarORCID,Sharma RavishORCID,Sharma Kash DevORCID

Abstract

The confinement of electrons in gold nanoparticles results in Surface Plasmon Resonance (SPR), which is characterized by electric field enhancement in the vicinity of these nanoparticles. This property has been extensively studied and applied in various fields. In our research, we conduct a detailed investigation of plasmonic coupling in spherical gold nanoparticles. Specifically, we use the Discrete Dipole Approximation (DDA) method implemented in DDSCAT to simulate the coupling of electric fields in a doublet of nanoparticles as a function of the distance between them. Our simulations show that the coupling of SPR between two nanoparticles occurs up to a separation of 12 nm. Moreover, we extend our simulations to study the coupling of nanoparticles in linear chains consisting of up to five nanoparticles and in clustered forms. Our results indicate that the SPR coupling in a linear chain occurs, and as the number of nanoparticles increases, the field enhancement also increases. However, we observe that this effect saturates after four nanoparticles in a line. Our study provides insights into the plasmonic coupling in gold nanoparticles, which can aid in the design and optimization of plasmonic devices for various applications.

Publisher

V. N. Karazin Kharkiv National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3