Mechanism of Hydrogen Production in The Processes of Radiation Heterogeneous Splitting of Water with the Presence of Nano-Metal and Nano-MeO

Author:

Garibov Adil,Jafarov Yadigar,Imanova GunelORCID,Agayev Teymur,Bashirova Sevinj,Aliyev Anar

Abstract

In the study, the optimal values of the ratio of the distance between particles to the particle size in the radiation-heterogeneous radiolysis of water in nano-Me and nano-MeO systems were determined. In those systems, the effect of water density and system temperature on the radiation-chemical release of molecular hydrogen obtained from thermal and radiation-thermal decomposition of water was considered. The article also determined the effect of particle sizes and the type of sample taken on the radiation chemical yield of molecular hydrogen. In the presented article, the change of molecular hydrogen according to adsorbed water and catalyst was studied. Thus, in the case of a suspension of nano-zirconium in water, the energy of electrons emitted from the metal is completely transferred to water molecules, which leads to an increase in the yield of hydrogen. When radiolysis of water in the presence of nano-metals, energy transfer can be carried out mainly with the participation of emitted electrons. Therefore, in the case of radiolysis of water in suspension with n-Zr, the yield of hydrogen increases by 5.4 times compared to the processes of radiolysis in an adsorbed state. However, in radiation-heterogeneous processes of obtaining hydrogen from water in contact with metal systems, it is necessary to take into account that as a result of these processes surface oxidation occurs and after a certain time the systems are converted to n-Me-MeO+H2Oliq. systems. For nano sized oxide compounds, the mean free path of secondary electrons formed as a result of primary processes of interaction of quanta with atoms is commensurate with the particle sizes of nano-oxides (λ ≈ R_(H-оxides)). Further, these electrons interact with the electronic subsystem of silicon. For nanocatalysts, the length of free paths of secondary and subsequent generations of electrons is greater than the size of catalyst particles (R_cat≤100nm). Usually, their energy is sufficient to conduct independent radiolytic processes in the contact medium of the catalyst.

Publisher

V. N. Karazin Kharkiv National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3