Effect of Stratification and Joule Heating on MHD Dusty Viscoelastic Fluid Flow Through Inclined Channels in Porous Medium in Presence of Molecular Diffusivity

Author:

Al Khayer Saleem JabedORCID,Chakraborty ShyamantaORCID

Abstract

An analysis is carried out to study laminar MHD convection flow of a second order dusty viscoelastic fluid in porous medium through an inclined parallel plate channel in the presence of molecular diffusivity. The plates are maintained at two different temperatures that decay with time. The study is done under the consideration that viscosity and density of the fluid are variable to the extent that it causes stratification and joule heating effect in the process of the flow. The purpose of the study is to examine how stratification and joule heating affect the flow in relation to the physical quantities namely, Stratification factor, Hartmann number, Viscoelastic coefficient, Joule heating parameter, Prandtl number, Eckert number, Schmidt number and Porosity of the medium etc. The non-dimensional governing equations are solved analytically by using regular perturbation technique, and the graphs are plotted using MATLAB programming language. The mathematical expressions for fluid and particle velocity, fluid temperature, fluid concentration, skin friction for fluid and particle, flow flux for fluid and particle, Nusselt number, Sherwood number at the plates are evaluated and their nature of variations for different numerical values of physical parameters are shown graphically, discussed and conclusions are drawn.

Publisher

V. N. Karazin Kharkiv National University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3