Abstract
Using the auto combustion sol-gel method, nanoferrite crystalline aligns of Dy3+ replaced Zn-Fe spinel ferrite with the chemical formula DyxZn1-xFe2-xO4 (x= 0.00, 0.05) were successfully synthesized. In this process, citric acid was utilized as energy (fuel) in a 3:1 ratio to metal nitrate. Using XRD and FT-IR, the crystal structure and phase of dysprosium zinc was examined. Using the XRD method, the crystal size, lattice constant, cation distribution, and porosity were ascertained. FT-IR spectroscopy is used to infer structural study and the redistribution of cations between octahederal (A) and tetrahederal (B) site of Zn material. According to morphological research, the temperature during sintering is what causes grain to form and grow. Utilizing the Hysteresis Loop Technique, saturation magnetism and magneton number are determined. In Zn-Fe ferrite, the saturation magnetization rises with increasing density x, utilizing the Sol-gel auto-combustion method at a comparatively low temperature. Using nitrate citrate, the nanocrystallite DyxZn1-xFe2-xO4 was created. The combustion process and chemical gelation are unique. Using citric acid as a catalyst, their metal nitrates nanoferrites underwent a successful chemical reaction and were obtained as a dried gel. FT-IR, UV-Visible, VSM and XRD were used to characterize the produced nanoferrite powders. Magnetization and hysteresis were measured using the VSM technique. The FT-IR verifies that the synthesized substance is ferrite. The size of the nanocrystalline ferrite material, DyxZn1-xFe2-xO4, was determined by X-ray using the Scherrer method to be between 16.86 to 12.72 nm average crystallite size. Magnetization and hysteresis were measured using the VSM technique.
Publisher
V. N. Karazin Kharkiv National University