Molecular Dynamics Study of The Lysozyme-Based Drug Delivery Nanosystems Loaded with Antiviral Drugs and Cyanine Dyes

Author:

Zhytniakivska OlgaORCID,Tarabara UlianaORCID,Vus KaterynaORCID,Trusova ValeriyaORCID,Gorbenko GalynaORCID

Abstract

Protein-based drug nanocarriers are increasingly recognized as promising candidates for effective drug delivery, owing to a multitude of beneficial advantages over synthetic materials including low cytotoxicity, biocompatibility, biodegradability, abundance, renewability, and high drug loading capacity mediated by diverse functional groups and interactions. In the present study the molecular dynamics simulation was employed to explore the stability of lysozyme-based drug delivery nanosystems functionalized by the antiviral drugs (favipiravir, molnupiravir, nirmatrelvir and ritonavir) and cyanine dyes (AK7-5, AK5-6, AK3-11). A series of 5 ns or 100 ns MD simulations for the top-scored docked drug-dye-protein complexes, obtained using the PatchDock server was performed at 310 K with GROMACS software using the CHARMM General Force Field. The MD results have been analyzed in terms of the parameters, such as the backbone root mean-square deviation, gyration radius, solvent accessible surface area, the root means square fluctuations. The analysis of calculated parameters for the studied systems enabled us to improve the previously acquired molecular docking data. Taken together, the results obtained indicate that Lz-F-AK3-11, Lz-R-AK75, Lz-R-AK56, Lz-N-AK75, Lz-N-AK3-11, and Lz-M-AK75 systems exhibit the highest stability among the examined dye-drug-protein systems and represent potential candidates for the targeted delivery of the explored antiviral agents.

Publisher

V. N. Karazin Kharkiv National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3