Spectra of Collective Excitations and Low-Frequency Asymptotics of Green’s Functions in Uniaxial and Biaxial Ferrimagnetics

Author:

Abstract

The paper studies the dynamic description of uniaxial and biaxial ferrimagnetics with spin s=1/2 in alternative external field. The nonlinear dynamic equations with sources are obtained, on basis on which low-frequency asymptotics of two-time Green functions in the uniaxial and biaxial cases of the ferrimagnet are obtained. Energy models are constructed that are specific functions of Casimir invariants of the algebra of Poisson brackets for magnetic degrees of freedom. On their basis, the question of the stable magnetic states has been solved for the considered systems. These equations were linearized, an explicit form of the collective excitations spectra was found, and their character was analyzed. The article studies the uniaxial case of a ferrimagnet, as well as biaxial cases of an antiferromagnet, easy-axis and easy-plane ferrimagnets. It is shown that for a uniaxial antiferromagnet the spectrum of magnetic excitations has a Goldstone character. For biaxial ferrimagnetic materials, it was found that the spectrum has either a quadratic character or a more complex dependence on the wave vector. It is shown that in the uniaxial case of an antiferromagnet the Green function of the type Gsα,sβ(k,0), Gsα,nβ(k,0) and Gsα,sβ(0,ω) have regular asymptotic behavior, and the Green function of type Gnα,nβ(k,0)≈1/k2 and Gsα,nβ(0,ω)≈1/ω, Gnα,nβ(0,ω)≈1/ω2 have a pole feature in the wave vector and frequency. Biaxial ferrimagnetic states have another type of the features of low-frequency asymptotics of the Green's functions. In the case of a ferrimagnet, the “easy-axis” of the asymptotic behavior of the Green functions Gsα,sβ(0,ω), Gsα,nβ(0,ω), Gnα,nβ(0,ω), Gsα,sβ(k,0), Gsα,nβ(k,0), Gnα,nβ(k,0) have a pole character. For the case of the “easy-plane” type ferrimagnet, the asymptotics of the Green functions Gsα,nβ(0,ω), Gnα,nβ(0,ω), Gsα,nβ(k,0), Gnα,nβ(k,0), have a pole character, and the Green function Gsα,sβ(k,ω) contains both the pole component and the regular part. A comparative analysis of the low-frequency asymptotics of Green functions shows that the nature of magnetic anisotropy significantly effects the structure of low-frequency asymptotics for uniaxial and biaxial cases of ferrimagnet. Separately, we note the non-Bogolyubov character of the Green function asymptotics for ferrimagnet with biaxial anisotropy Gnα,nβ(k,0)≈1/k4.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3