Fixed Points Features in N-Point Gravitational Lenses

Author:

Abstract

A set of fixed points in N-point gravitational lenses is studied in the paper. We use complex form of lens mapping to study fixed points. There are some merits of using a complex form over coordinate. In coordinate form gravitational lens is described by a system of two equations and in complex form is described by one equation. We transform complex equation of N-point gravitational lens into polynomial equation. It is convenient to study polynomial equation. Lens mapping presented as a linear combination of two mappings: complex analytical and identity. Analytical mapping is specified by deflection function. Fixed points are roots of deflection function. We show, that all fixed points of lens mapping appertain to the minimal convex polygon. Vertices of the polygon are points into which dimensionless point masses are. Method of construction of fixed points in N-point gravitational lens is shown. There are no fixed points in 1-point gravitational lens. We study properties of fixed points and their relation to the center of mass of the system. We obtained dependence of distribution of fixed points on center of mass. We analyzed different possibilities of distribution in N-point gravitational lens. Some cases, when fixed points merge with the center of mass are shown. We show a linear dependence of fixed point on center of mass in 2-point gravitational lens and we have built a model of this dependence. We obtained dependence of fixed point to center of mass in 3-point lens in case when masses form a triangle or line. In case of triangle, there are examples when fixed points merges. We study conditions, when there are no one-valued dependence of distribution of fixed points in case of 3-points gravitational lens and more complicated lens.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3