Surface-Kinetics-Limited Ostwald Ripening of Spherical Precipitates at Grain Boundaries

Author:

Abstract

Ostwald ripening of sufficiently large (usually macroscopic) precipitates is the late stage of the diffusion decomposition of a supersaturated solid solution, occurring through the formation of fluctuations and subsequent growth of centers (nuclei) of a new phase. The paper describes a theoretical study of the Ostwald ripening of spherical precipitates of a newly formed phase at the grain boundary of finite thickness with the diffusion of impurity atoms from the grain interior to the grain boundary considered. The precipitate growth is assumed to be limited by the kinetics of impurity atom imbedding into the precipitate rather than by the impurity atom diffusion inside the grain boundary. The speed of diffusion growth of spherical precipitate located on the grain boundary is found. A system of equations which describes surface-kinetics-limited growth of Oswald ripening of spherical precipitates on the grain boundary is formulated. This system consists of the equation of growth rate of the precipitate, the kinetic equation for the precipitates size distribution function which is normalized by the precipitates density, and the equation of the balance of matter in the system (the law of conservation of matter). The law of conservation of matter takes into account the atoms of impurities which are in solid solutions of the grain boundary and the body of the grain as well as in the precipitates which is the specifics of our problem. The asymptotic time dependences are found for the average and critical precipitate radius, supersaturation of solid solution of impurity atoms in the grain boundary, precipitate size distribution function, precipitate density, and for the factor of grain boundary filling with precipitates (the area covered by the precipitates per unit area of the grain boundary) and the total number of impurity atoms in precipitates. The factor of grain boundary filling with precipitates is a characteristic of the two-dimensional Ostwald ripening problem. A discussion of the limits of validity of obtained results is given.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3