Instabilities in a Non-Uniformly Rotating Medium with Stratification of the Temperature in an External Uniform Magnetic Field

Author:

Abstract

In this paper the stability of the non-uniformly rotating cylindrical plasma in the axial uniform magnetic field with the vertical temperature gradient is investigated. In the approximation of geometrical optics a dispersion equation for small axisymmetric perturbations is obtained with the effects of viscosity, ohmic and heat conductive dissipation taken into account. The stability criteria for azimuthal plasma flows are obtained in the presence of the vertical temperature gradient and the constant magnetic field. The Rayleigh-Benard problem for stationary convection in the non-uniformly rotating layer of the electrically conducting fluid in the axial uniform magnetic field is considered. In the linear theory of stationary convection the critical value of the Rayleigh number subject to the profile of the inhomogeneous rotation (Rossby number) is obtained. It is shown that the negative values of the Rossby number have a destabilizing effect, since the critical Rayleigh number becomes smaller, than in the case of the uniform rotation , or of the rotation with positive Rossby numbers . To describe the nonlinear convective phenomena the local Cartesian coordinate system was used, where the inhomogeneous rotation of the fluid layer was represented as the rotation with a constant angular velocity and azimuthal shear with linear dependence on the coordinate. As a result of applying the method of perturbation theory for the small parameter of supercriticality of the stationary Rayleigh number a nonlinear Ginzburg-Landau equation was obtaned. This equation describes the evolution of the finite amplitude of perturbations by utilizing the solution of the Ginzburg-Landau equation. It is shown that the weakly nonlinear convection based on the equations of the six-mode Lorentz model transforms into the identical Ginzburg-Landau equation. By utilizing the solution of the Ginzburg-Landau equation, we determined the dynamics of unsteady heat transfer for various profiles of the angular velocity of the rotation of electrically conductive fluid.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3