Investigation of Structural, Optical and Electrical Properties of MnO Doped with Cu Thin Films Prepared by PLD Technique for Solar Cell Applications

Author:

Mohammed Doaa T.ORCID,Mohammed Ghuson H.ORCID

Abstract

In the current study, concentrated Nd:YAG laser pulses at 500 mJ with a second radiation at 1064 nm (pulse width 9 ns) and repetition frequency (6 Hz) for 300 laser pulses incident on the target surface were employed to coat glass substrates with MnO thin films. Using an X-ray diffractometer (XRD), an atomic force microscope (AFM), and a UV-Vis spectrophotometer, the structural, morphological, and optical characteristics of the films doped with different concentrations of Cu content (0.03, 0.05, 0.07, and 0.09) were examined. The results show that the films are polycrystalline, with the largest peak appearing at an angle of 35.31, or a reflection of (111). The crystalline size of the deposited thin films was calculated using Debye Scherer formula and found to increase from 11.8 nm for undoped MnO2 to 29.6 nm for doped (MnO) with the increase of Cu content from x=0 to x=0.09 at preferred orientation of (111). All the samples have a cubic structure. Also, the results showed that Cu content of the films affects the surface morphology. From the results of AFM analysis, it was found that the roughness and average diameter change when adding Cu to the structure, with the highest value occurring at Cu ratio 0.09 equal to 65.40 and 71.21 nm, respectively. UV–Vis spectrophotometer was used to investigate the optical transmission. It was found that when Cu content of films increased, the transmittance of films decreased. Hall Effect measurements show that all prepared films at RT have two type of conductivity P-type and n-type. The electrical characteristics of the (MnO)1-xCux/Si heterojunction Solar Cell have been studied and found that the efficiency (η) decreases with the increase of Cu content.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3