Abstract
Today, one of the most significant and widely used engineering fields is heat transfer science. Saving energy and increasing efficiency are crucial given the need for energy management. Numerous sectors, including the cooling of machinery in power plants, the car industry, electronic equipment, and heat exchangers, heavily rely on fluid heat transfer. Improved design and functionality of thermal systems are made possible by increased heat transfer rate by fluids. This study presents the production, characteristics, and potential uses of PEG/MgO/SiC-H2O nanofluids as superior heat transfer media. Results indicate that when the quantity of MgO/SiC nanoparticles increased, the melting time reduced. Additionally, when the MgO/SiC NP concentration increased from 3 to 12 weight percent after 15 minutes, the reduction in melting time reached 65.5%. Additionally, when the concentration of MgO/SiC NPs was increased from 3 weight percent to 12 weight percent at photon wavelength (λ=400 nm), the electrical conductivity of PEG/MgO/SiC-H2O nanofluids increased by about 30.6%. At the same time, the absorbance increased by about 66.4% and the transmittance decreased by 58.8%.
Publisher
V. N. Karazin Kharkiv National University
Subject
General Physics and Astronomy,General Materials Science
Reference39 articles.
1. E.A.C. Panduro, F. Finotti, G. Largiller, and K.Y. Lervåg, “A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors”, Applied Thermal Engineering, 211, 118346 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118346
2. S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Technical Report ANL/MSD/CP-84938; CONF-951135-29, Argonne National Lab., IL (United States), 1995, https://www.osti.gov/biblio/196525
3. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: A review of the diverse applications of nanofluids”, J. Appl. Phys. 113, 011301 (2013), http://dx.doi.org/10.1063/1.4754271
4. F.L. Rashid, and A. Hashim, “Recent Review on Nanofluid/ Nanocomposites for Solar Energy Storage”, International Journal of Scientific Research and Engineering Development, 3(4), 780-789 (2020).
5. F.L. Rashid, and A. Hashim, “Development of Phase Change Materials/Nanoparticles for Thermal Energy Storage”, International Journal of Scientific Research and Engineering Development, 3(4), 790-799 (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献