Diffusion of High-Energy Negatively Charged Particles in the Field Atomic Strings of an Oriented Crystal

Author:

Kyryllin Igor V.ORCID,Shul’ga Mykola F.ORCID,Shchus Oleksandr P.ORCID

Abstract

The work analyzes the dependence of the diffusion index of high-energy negatively charged particles on the energy of the transverse motion in oriented crystal. The crystal had an axial orientation relative to the direction of particle incidence. The analysis was carried out using the example of π− mesons with a momentum of 100 GeV/c that impinged on a silicon crystal, which corresponds to the conditions achievable on secondary beam of the the CERN SPS accelerator. The analysis showed that the dependence under consideration is not monotonic. It has a minimum in the energy region slightly exceeding the value of the potential energy of particles at the saddle point of the potential of crystal atomic strings. At higher values of the energy of transverse motion of particles E⊥, the diffusion index increases with increasing E⊥, since this increases the average absolute value of the velocity of particle motion in the plane orthogonal to the crystal axis, near which motion takes plase. The increase in the diffusion index at low values of E⊥ is associated with the manifestation of incoherent scattering of particles on thermal vibrations of crystal atoms. The analysis carried out in the work is of interest both for a deeper understanding of the process of high-energy negatively charged particle beams passage through oriented crystals, and for improving methods for charged particle beams steering with a help of straight and bent oriented crystals.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3