Amplitudes of 3H, 3He Two-Particle Photo-Breakup in Non-Local QED Approach

Author:

Kuznietsov PylypORCID,Kasatkin Yuriy A.ORCID,Klepikov Vyacheslav F.ORCID

Abstract

Three-nucleon systems are essential for the investigation of many-body forces in nuclear physics. Well-grounded parametrization of their vertex functions with further application for the calculation of cross-sections in nonlocal QED approach provides the ground for investigation of the variety of multi-particle systems. In present paper we describe the process of parametrization of two-particle photo-breakup amplitudes of three-nucleon systems (3H, 3He). We provide the general description of the wave function construction for three-nucleon systems as well as the parametrization of their vertex functions accounting two- and three-nucleon interactions based on meson exchange current formalism. In our calculations we account first and second order one-pion exchange terms and the term related to the exchange of ω and ρ mesons. The three-nucleon interaction potential is given as a sum of attraction (two-pion exchange) term andappropriate repulsive part. Based on the variational ”Urbana + Model VII” amplitudes we provide the results for energy dependence of differential cross-section of 3He(γ, p)d reaction at proton angle θ = 90◦ from the threshold up to Eγ = 40 MeV and compare theoretical predictions with the available experimental data. The investigation is also provided for angular cross-section distributions at high photon energies (Eγ = 305 ± 5 MeV; 365 ± 5 MeV; 450 ± 10 MeV and 675 ± 50 MeV). Correct description of 3H, 3He photo-disintegration processes in a unified approach based on the gauge nature of the electromagnetic field implies application of this model for other multi-particle systems.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3