Optical and Electrical Properties of Graphite Thin Films Prepared by Different Methods

Author:

Abstract

The paper reports on the structural, optical and electrical properties of graphite thin films prepared by two methods: the vacuum-free method "Pencil-on-semiconductor" and via the electron beam evaporation. Graphite thin films prepared by the non-vacuum method has annealed at a temperature of 920K.The transmission spectra of the investigated graphite films and the electrical properties of these thin films were measured at T = 300 K. The value of the height of barriers Eb at the grain boundaries and the temperature dependence of the electrical conductivity in the range ln(σ·T1/2) = f(103/T) were determined, It is established that the height of the barrier at the grain boundaries for the drawn graphite films is Eb = 0.03 eV, for annealed Eb = 0.01 eV and for the graphite films deposited by the electron beam evaporation Eb = 0.04 eV, ie for annealed film the barrier height is the smallest. It is shown that graphite films deposited by the electron beam evaporation reveals the highest transmittance (T550 ≈ 60%), and the transmission of drawn films is the lowest, annealing leads to its increase. The minimum values ​​of transmission at a wavelength λ = 250nm are due to the scattering of light at the defects that are formed at the grain boundaries. Annealed graphite films have been found to possess the best structural perfection because they have the lowest resistivity compared to non-annealed films and electron-beam films and have the lowest barrier height. Simultaneous increase of transmission in the whole spectral range, increase of specific electrical conductivity and decrease of potential barrier at grain boundaries of the annealed drawn graphite film clearly indicate ordering of drawn graphite flakes transferred onto anew substrate, which led to the reduction of light scattering and the improvement of charge transport due to the larger area of ​​overlap between graphite flakes.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3