Effect of Surface Pre-Treatment on Adhesive Strength of Multi-Component Vacuum-Arc Coatings

Author:

Abstract

The results of investigations of multi-component nanostructured coatings of (TiAlSiY)N/CrN type are presented. The influence of different variants of substrate surface pretreatment on adhesive strength and hardness of coatings was studied. Pre-treatment of samples was carried out in plasma of two-stage gas discharge according to various technological schemes. Except for ion-plasma purification, some samples were pretreated with a sublayer of chromium within 5 minutes. The coatings were formed by a vacuum-arc deposition method at simultaneous spraying of two cathode targets. The first cathode is made of chromium, and the second cathode is made of multicomponent Ti - Al - Si - Y alloy obtained by vacuum-arc remelting of powder mixture of the mentioned elements. The coatings were deposited on polished stainless-steel substrates at negative 280 V bias potential. The geometry of the unit and its elements, as well as technological characteristics of the processes of evaporation-condensation were selected so that at a speed of rotation of samples 8 revolutions per minute the formation of the coating with a total thickness of about 9.0 microns occurred in approximately 60 minutes. The analysis of the composition of the coatings shows that the content of elements in the coating differs greatly from the content of elements in the sprayed cathodes. The X-ray diffractometry has shown that all deposition modes are characterized by the formation of phases with cubic (fcc) crystal lattice in both phase layers of multilayer coatings. In the layers formed at spraying of TiAlSiY alloy, a multi-element disordered solid solution (TiAlSiY)N with a crystal lattice of NaCl type and a lattice parameter of 0.4241 nm, as well as chromium mononitride CrN with a lattice parameter of 0.4161 nm, is determined. It has been established that preliminary formation of a chromium sublayer on the substrate leads to significant changes in adhesive strength of multi-component coatings compared to coatings without a sublayer.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3