Heat Localization in the Medium in Blow-Up Regime

Author:

Abstract

The existence of the effect of heat metastable localization in the medium in the blow-up heating regime was experimentally proved. This is the regime in which the heating energy for a finite period of time tends to infinity. Previous theoretical studies have shown that in this case some regions, inside of which the temperature increases, may arise, while their size remains constant or decreases with time (heat localization regions). These regions exist as long as there is some energy input from the outside. An installation for the experimental study of the thermal blow-up regimes in a solid was developed. The object of research was an aluminum rod with a heater at its end. The temperature distribution along the rod was measured with thermocouples. The temperature of the rod end could vary according to the given law. Calibration of the installation was performed. The sensitivity of thermocouples was determined. The inertia of the heating and cooling process was estimated. The mathematical description of the thermal processes, occurring during the experiment, was made. The nonlinear equation of heat conduction for the rod was solved, with the heat exchange with the environment by convection and radiation taken into account. The thermal regime at the boundary, which is necessary to create the thermal structures, was determined. The temperature distribution in the rod in the blow-up regime and non-blow-up regime was measured. In the blow-up regime the heat front (the coordinate of the point with the temperature equal to half the maximum temperature) initially shifts from the heat source, and then in the opposite direction, and the size of the area under heating decreases. In the non-blow-up regime the size of the heated region increases all the time. The predicted effect was supposed to be used in installations for thermonuclear fusion where the target was heated by laser radiation pulses of a special shape. This effect can also be used for localized heating in cutting and welding, when the adjacent regions are not to get very hot, and in other similar situations.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Reference19 articles.

1. S.P. Kapitza, S.P. Kurdyumov, G.G. Malinetskiy, Синергетика и прогнозы будущего [Synergetics and Forecasts of the Future], (Nauka, Moscow, 2003), pp. 288. (in Russian)

2. S.P. Kapitza, in: World population growth as a scaling phenomenon and the population explosion. Climate change and energy policy, edited by L. Rosen, and R. Glasser. (AIP, New York, 1992), pp. 241-248.

3. S.P. Kapitza, World population growth. A world at the crossroads: new conflicts, new solutions, edited by J. Rotblat. (World Scientific, Singapore, 1994), pp. 198-217, https://doi.org/10.1142/9789814327008_0024.

4. A.A. Samarsky, N.V. Zmitrenko, S.P. Kurdyumov, and A.P. Mikhailov, Доклады Академии Наук СССР [Reports of the USSR Academy of Sciences]. 233(6), 1344 1347 (1975), http://www.mathnet.ru/links/0c91838b716a90926704d734c046bb31/dan39241.pdf. (in Russian).

5. S.P. Kurdyumov, Режимы с обострением [Peaking modes]. (Физматлит, Москва, 2006), pp. 238. (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3