Viscosity and Vortex Formation in a Liquid Placed in A Rotating Cylindrical Vessel

Author:

Abstract

The free fall of steel balls of different diameters in viscous liquids placed in a cylindrical vessel at rest or rotating at a constant rate as well as the vortex generation in a liquid rotating in a cylindrical vessel were experimentally studied. To solve the problem a test stand including a cylindrical glass vessel mounted on the axis of a governed-speed electric engine shaft, monitoring and measuring devices as part of a digital laser tachometer, a digital USB microscope and a laptop was developed to visualize the processes under study. Experimental dependences of the instantaneous velocity of the balls on the distance traveled by them were obtained. It has been demonstrated, that there is a transition mode of the ball velocity variation when it enters the liquid. The transition mode was characterized by a damped, periodic variation of instantaneous velocity depending on a distance. It has been found that at a certain distance traveled by the ball, the transition mode becomes stationary when the ball moves at a constant velocity. The dependence of the liquid viscosity on the vessel rotation frequency was studied in the stationary mode using the Stokes method. It has been demonstrated that the common behavior of such processes is decreasing the time of balls falling and, consequently, the coefficient of a liquid dynamic viscosity with increasing the rotation frequency of the vessel. A periodic variation in the coefficient of the dynamic viscosity depending on the frequency of the vessel rotation was found experimentally. It has been found experimentally that several threadlike spiral flows of a colored liquid are formed parallel to the axis of the cylinder, when the cylindrical vessel rotates. At that, the velocity of the downward drift of the colored liquid increases with increasing its rotation rate and it increases from the periphery to the center of the vessel.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Reference22 articles.

1. L.D. Landau, and E.M. Lifshits, Теоретическая физика. Гидродинамика, T.6, [Theoretical physics. Hydrodynamics, Vol.6,] (Nauka, Moscow, 1986), pp. 736. (in Russian)

2. Е.G. Richardson, Proc. Phys. Soc. 61(4), 352-367 (1948), https://doi.org/10.1088/0959-5309/61/4/308.

3. M. Stephen, and Jr. Laverty, M.Sc. thesis, Massachusetts Institute of Technology, 2004, http://web.mit.edu/mhl/www/Impact%20Lab%20Page/Whole%20Thesis.pdf

4. А.B. Lotov, Uchenyie zapiski TsAGI, 2(4), 22-30 (1971). (in Russian).

5. I. Mirzaii, and M. Passandideh-Fard, in: 19th Annual Conference on Mechanical Engineering-ISME-2011, (The University of Birjand, Iran, 2011), pp. 1 4. https://www.researchgate.net/publication/307510320_The_Impact_of_a_Solid_Object_on_to_a_Liquid_Surface

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3