Simulation Study of Energy Resolution of the Electromagnetic Shashlyk Calorimeter for Different of Layers and Absorber Combinations

Author:

Abstract

The response simulation of an ideal KOPIO-type electromagnetic sampling calorimeter was carried out in the energy range of 50 MeV – 16 GeV using Geant4-10.6.0 toolkit. In this work, we obtained energy resolution parameters for prototypes of Shashlyk calorimeter modules (ECAL SPD) of the NICA collider SPD setup for different thicknesses of a lead absorber with different numbers of layers. The NICA scientific experiment provides a unique opportunity to study parton distributions and correlations in hadron structure when working with high-intensity polarized relativistic ion beams. The ECAL electromagnetic calorimeter is one of the key detectors of the SPD device. There are some preliminary requirements for an electromagnetic calorimeter, in particular, for energy resolution in the energy range from 50 MeV to 16 GeV. It has been shown in detail that a more accurate obtaining of stochastic as well as permanent coefficients acting as parameters of the energy resolution parameterization formula is possible when longitudinal energy leakages from the calorimeter tower are taken into account. Such leakages are always present even in small amounts. Thus, the energy resolution parameterization of an ideal sampling calorimeter with a good χ 2/ndf value is fitted with function of the type: σE/E=(a/√E) (+)b(+)(p1ln1E+ p2ln2E + p3ln3E ) , where the logarithm lnE means ln(E/Ec), where Ec is the effective critical energy. Based on the results of detailed modeling, the dependence of these parameters on the number of calorimeter plates and absorber thicknesses was found. The approach is based on careful selection and analysis of the energy spectra obtained by modeling according to the χ-square criterion and an adequate choice of the approximation functions of the energy resolution. The methods proposed in this paper can be easily extended to other combinations of absorber-scintillator thicknesses.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Reference16 articles.

1. Conceptual design of the Spin Physics Detector, JINR, Dubna, 2018, http://spd.jinr.ru.

2. A. Roy, et al., FERMILAB-PUB-17-186-E, 1-32 (2017).

3. I-H. Chiang, et al., AGS Experiment Proposal 926, (1996).

4. R. Appel, et al., Nucl. Instrum. Meth. A, 479(2-3), 249-406 (2002), https://doi.org/10.1016/S0168-9002(01)00906-8.

5. L. Aphecetche, et al., Nucl. Instrum. Meth. A, 499(2-3), 521-536 (2003), https://doi.org/10.1016/S0168-9002(02)01954-X.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3