Investigation of EBT3 Radiochromic Film Response in a High-Dose Range of 6 MV Photon and 6 MeV Electron Beams Using a Three-Color Flatbed Scanner

Author:

Abstract

Radiochromic film dosimetry has been commonly used for determination of dose measurement in radiotherapy for many years because of their high spatial resolution, low energy dependence and its approximate tissue equivalent. Additionally, it has other practical advantages, e.g.it is suitable for therapy range beam qualities, a water resistance material, a relatively insensitive to visible light, and does not need to make bathing process to obtain dose information. They are also independent to dose rate. Hence they are very useful and practical for clinical applications such as brachytherapy, electron therapy, skin dose measurements and stereotactic radiotherapy. Among them, the dynamic dose range of EBT3 radiochromic films are generally recommended for the dose range of 0.1 to 20 Gy. However, in this study, it is aimed to observe the behavior of EBT3 films in high dose range of up to 90 Gy under the irradiations. For this aim, the net optical densities were obtained with increasing dose values under photon and electron beams by employing three color scanning channel (red-green-blue). Thus, for making calibration curves, it was decided which color channel for EBT3 radiochromic film would be the most suitable one in different dose ranges. In experimental setup, the reference circumstances were first established and dose calibration procedure were carried out in RW3 phantom. Then the irradiated films were cut carefully into 2x2.5 cm2 pieces, and they were grouped into 2 as irradiation and control groups. The control group was waited for background, i.e. they are not irradiated. Before the irradiation, two groups of films have been scanned in flatbed scanner for three channels. After that, the irradiation group films was placed to align the exact place of effective point of ionization chamber under the reference condition. Later, they were irradiated one by one to up to 90 Gy with using 6 MV and 6 MeV beam qualities, respectively. Subsequently, both of film groups were again scanned in flatbed scanner for three –color channels. Optical densities and their standard deviations corresponding to the chosen dose values were obtained from the scanned films. Thus, calibration curves were plotted for all three colors channel according to two different beam conditions. The results obtained for 6 MV beam quality showed that if red color channel is selected for 0.9 Gy-7.3 Gy dose range, and green color channel is selected for 7.3 Gy-42.8 Gy dose range, and blue color channel is selected for 42.8 Gy-90.0 Gy dose range, the percentage uncertainty values in the obtained results are minimal. For the 6 MeV beam quality, if red color channel is selected for 0.9 Gy-7.7 Gy dose range, and green color channel is selected for 7.7 Gy-45.3 Gy dose range, and blue color channel is selected for 45.3 Gy-90.0 Gy dose range, the percentage uncertainty values in the obtained results are minimal. In conclusion, the percentage uncertainty values for the obtained results were evaluated for 6 MV photon and 6 MeV electron energies by using different scanning channels of EBT3 radiochromic film. It has been found that measurements having low percentage uncertainty values can be achieved by changing the scanning channel by deciding proper combinations with increasing doses for both energies (6MV photon and 6 MeV electron). The study also shows that EBT3 radiochromic films can be used at lower percentage uncertainty values ​​at doses higher than the recommended dose range values.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3