Influence of Electron Injection on the Characteristics of a Hollow Cathode Glow Discharge

Author:

Abstract

The article presents the results of experimental studies of a glow discharge with a hollow cathode in helium and argon gases using an auxiliary discharge as an electron emitter. The authors proposed to make the electrode common for both discharges in the form of a cylindrical metal mesh. The advantage of this design is explained as follows. The connection between the discharges is carried out through holes in the grid with a geometric transparency of 0.2, which makes it possible not only to smoothly control the glow discharge current, but also to enhance the discharge current. Plasma is known to be one of the most efficient electron emitters; however, its use as a cathode in devices with a glow discharge at low gas pressures is complicated by the fact that a grid with small holes is required to separate the electron flow from the plasma, and it is impractical to use such a system in view of low mechanical strength of the grid Since the hollow cathode works effectively at low gas pressures, the release of an electron flux from the plasma of some auxiliary discharge is possible with much larger holes in the grid separating the plasma and the hollow cathode cavity. In this case, the grid can be made such that it can withstand sufficiently high thermal loads and can operate in typical discharge modes with a hollow cathode. The injection of electrons into the cathode cavity of the glow discharge changes the radial distribution of the glow intensity, the width of the cathode dark space, and other parameters of the plasma in the cathode cavity. The influence of electrons penetrating from the auxiliary discharge into the cathode cavity of the main discharge becomes significant when the current of these electrons is comparable to or exceeds the current of electrons leaving the grid cathode surface as a result of γ-processes. In parallel with the measurement of the optical and electrical characteristics of the hollow cathode glow discharge plasma, measurements of the electron concentration were carried out by the microwave sounding method. The entire current of the auxiliary discharge penetrates into the cavity of the main discharge; however, after acceleration in the cathode dark space, the electrons penetrating from the auxiliary discharge ionize gas atoms and noticeably increase the current of the main discharge. Additional ions formed due to the ionization of the gas by the injected electrons knock out new electrons from the cathode surface, which makes it possible to increase the discharge current.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Reference9 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3