Family of the Atomic Radial Basis Functions of Three Independent Variables Generated by Helmholtz-Type Operator

Author:

Protektor Denys1ORCID

Affiliation:

1. V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

The paper presents an algorithm for constructing the family of the atomic radial basis functions of three independent variables generated by Helmholtz-type operator, which may be used as basis functions for the implementation of meshless methods for solving boundary-value problems in anisotropic solids. Helmholtz-type equations play a significant role in mathematical physics because of the applications in which they arise. In particular, the heat equation in anisotropic solids in the process of numerical solution is reduced to the equation that contains the differential operator of the special form (Helmholtz-type operator), which includes components of the tensor of the second rank, which determines the anisotropy of the material. The family of functions is infinitely differentiable and finite (compactly supported) solutions of the functional-differential equation of the special form. The choice of compactly supported functions as basis functions makes it possible to consider boundary-value problems on domains with complex geometric shapes. Functions include the shape parameter , which allows varying the size of the support and may be adjusted in the process of solving the boundary-value problem. Explicit formulas for calculating the considered functions and their Fourier transform are obtained. Visualizations of the atomic functions and their first derivatives with respect to the variables and at the fixed value of the variable for isotropic and anisotropic cases are presented. The efficiency of using atomic functions as basis functions is demonstrated by the solution of the non-stationary heat conduction problem with the moving heat source. This work contains the results of the numerical solution of the considered boundary-value problem, as well as average relative error, average absolute error and maximum error are calculated using atomic radial basis functions and multiquadric radial basis functions.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3