Cosmography of the Dynamical Cosmological «Constant»

Author:

Abstract

The paper considers a cosmographical approach to analyze cosmological models. Cosmography is a method to describe the kinematics of the cosmological expansion based only on the cosmological principle. We consider a method of treating free parameters of a cosmological model in terms of the directly observable cosmographic values related to the time-derivatives of the Hubble parameter (deceleration, jerk, snap). The method is applied to analyze two cosmological models involving the time-dependence of the cosmological constant in the form Λ(t)→Λ(H) when this approach is especially efficient. Both models interpret the dark energy in the form of the cosmological constant as energy of physical vacuum, which is currently the most supported treatment. The first one means being proportional to the Hubble parameter, and the second one involves a constant and a quadratic term. As a result, the free parameters of both models are expressed in terms of the currently observed values of the Hubble parameter, deceleration, and jerk. The obtained expressions for model parameters are exact, as the method does not involve any additional assumptions. Furthermore, it leads to deal with algebraic equations instead of differential ones. After this procedure, solutions of the evolution equations are obtained in the form of the time-dependence of the Hubble parameter. The obtained model parameters are substituted to the solutions, which are analyzed for a typical range of cosmographic scalars taken from recent observations. Finally, the proposed approach is used to eliminate free parameters from both models and to obtain constraints for the directly observable cosmographic values that can be tested to correspond to present observations data. For the considered cases, such constraints are received respectively for the jerk and the snap parameters with respect to the deceleration. The constraint for the linear model is compared with current observational value ranges for the deceleration and the jerk parameters.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Reference18 articles.

1. S. Dodelson, Modern cosmology, 4nd ed. (San Diego, CA: Academic Press, 2008). ISBN 978-012219141.

2. P.A.R. Ade et al., arXiv:1303.5076 [astro-ph.CO].

3. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, 1993).

4. H.E.S. Velten, R.F. vom Marttens and W. Zimdahl, Eur. Phys. J. C, 74, 3160 (2014).

5. Yu. L. Bolotin, D.A. Yerohin and O.A. Lemets, Physics-Uspekhi, 182(9), 941-986 (2012). (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3