Interactions of Fibrillar Insulin with Proteins: A Molecular Docking Study

Author:

Trusova Valeriya1ORCID,Zhytniakivska Olga1ORCID,Tarabara Uliana1ORCID,Vus Kateryna1ORCID,Gorbenko Galyna1ORCID

Affiliation:

1. V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

During the last decades growing attention has been paid to ascertaining the factors responsible for the toxic potential of particular protein aggregates, amyloid fibrils, whose formation is associated with a range of human pathologies, including the neurodegenerative diseases, systemic amyloidosis, type II diabetes, etc. Despite significant progress in elucidating the mechanisms of cytotoxic action of amyloid fibrils, the role of fibril-protein interactions in determining the amyloid toxicity remains poorly understood. In view of this, in the present study the molecular docking techniques has been employed to investigate the interactions between the insulin amyloid fibrils (InsF) and three biologically important multifunctional proteins, viz. serum albumin, lysozyme and insulin in their native globular state. Using the ClusPro, HDOCK, PatchDock and COCOMAPS web servers, along with BIOVIA Discovery Studio software, the structural characteristics of fibril-protein complexes such as the number of interacting amino acid residues, the amount of residues at fibril and protein interfaces, the contributions of various kinds of interactions, buried area upon the complex formation, etc. It was found that i) hydrophilic-hydrophilic and hydrophilic-hydrophobic interactions play dominating role in the formation of fibril-protein complexes; ii) there is no significant differences between the investigated proteins in the number of fibrillar interacting residues; iii) the dominating hydrogen bond forming residues are represented by glutamine and asparagine in fibrillar insulin, lysine in serum albumin and arginine in lysozyme; iv) polar buried area exceeds the nonpolar one upon the protein complexation with the insulin fibrils. The molecular docking evidence for the localization of phosphonium fluorescent dye TDV at the fibril-protein interface was obtained.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3