Effect of Parasitic Parameters and Environmental Conditions on I-V and P-V Characteristics of 1D5P Model Solar PV Cell Using LTSPICE-IV

Author:

Shafi Muhammad Aamir1ORCID,Khan Muneeb2,Bibi Sumayya3,Shafi Muhammad Yasir2,Rabbani Noreena4,Ullah Hanif5ORCID,Khan Laiq6ORCID,Mari Bernabe7ORCID

Affiliation:

1. Department of Electrical Engineering, COMSATS University Islamabad, Pakistan; Department of Electrical Engineering, Federal Urdu University of Arts, Science and Technology, Islamabad, Pakistan; Instituto de diseño y Fabricación (IDF), Universitat Politécnica de València (UPV), Spain

2. Department of Electrical Engineering, Institute of Southern Punjab Multan, Pakistan

3. Department of Electrical Engineering, Bahauddin Zakariya University Multan, Pakistan

4. Department of Electrical Engineering, Sarhad University of Science & Information Technology, Peshawar, Pakistan

5. Department of Electrical Engineering, Federal Urdu University of Arts, Science and Technology, Islamabad, Pakistan

6. Department of Electrical Engineering, COMSATS University Islamabad, Pakistan

7. Instituto de diseño y Fabricación (IDF), Universitat Politécnica de València (UPV), Spain

Abstract

In this research work, the electrical simulation of 1D5P model solar cell is done using LTSpice-IV simulation software. In this work effect of environmental conditions i.e temperature, solar irradiance, and parasitic parameters i.e series as well as shunt resistances was carried out. It has been discovered that as temperature increases the performance of solar cell decrease because temperature causes to increase the recombination phenomenon and hence lower the performance. However, when the temperature rises from 00C to 500C, the I-V and P-V curves move to the origin showing the negative effect of increasing temperature on the solar cell. Solar irradiance has major role on the performance of solar cell. As solar irradiance increases from 250 Wm-2 to 1000 Wm-2, the performance of solar cell increases accordingly and I-V as well as P-V curve moves away from the origin. It is concluded that for different series resistances, I-V along with P-V characteristic of 1D5P model solar cell varies, as at 0.02Ω series resistance, a maximum short circuit current and maximum power is obtained. But when series resistance increased up 2 ohm only, the I-V and P-V curves moves to origin drastically. Shunt Resistance is the path of reverse current of the cell. As the shunt resistance increases, the path for reverse current decreased, hence all current goes to load, hence maximum power is obtained. Similarly when the value of shunt resistance decreased, the voltage-controlled section of I-V characteristics curve is moved closer to the origin hence reduced the solar cell performance. It's critical to understand how different factors affect the I-V and P-V characteristics curves of solar cells. The open circuit voltage, short circuit current and maximum power is all variable. The influence of these factors may be extremely beneficial when tracking highest power point of a solar cell applying various methods.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3