Detection of Lysozyme Amyloid Fibrils Using Trimethine Cyanine Dyes: Spectroscopic and Molecular Docking Studies

Author:

Zhytniakivska OlgaORCID,Tarabara UlianaORCID,Kurutos AtanasORCID,Vus KaterynaORCID,Trusova ValeriyaORCID,Gorbenko GalynaORCID

Abstract

Due to their unique photophysical and photochemical properties and high sensitivity to the beta-pleated motifs, cyanine dyes have found numerical applications as molecular probes for the identification and characterization of amyloid fibrils in vitro and the visualization of amyloid inclusions in vivo. In the present study the spectroscopic and molecular docking techniques have been employed to evaluate the amyloid sensitivity and the mode of interaction between the trimethine cyanine dyes and native (LzN) and fibrillar (LzF) lysozyme. It was found that the trimethine association with non-fibrilar and fibrillar lysozyme is accompanied by the changes in dye aggregation extent. The molecular docking studies between trimethine dyes and lysozyme in the native and amyloid states indicate that: i) trimethines tend to form the most stable complexes with deep cleft of the native lysozyme; ii) the dye binding with non-fibrillar protein is governed by the hydrophobic interactions, π-stacking contacts between aromatic or cyclopentane ring of the cyanine and Trp in position 63 or 108 and hydrogen bonds between the OH-groups of the trimethines and acceptor atoms of Asp 101 (AK3-7) and Gln 57 (AK3-8) of LzN; iii) cyanine dyes form the energetically most favorable complexes with the groove Gly 2-Leu 4/Ser 8-Trp 10 of the lysozyme fibril core; iv) cyanines-LzF interaction is stabilised by hydrobhobic contacts, π-stacking interaction and hydrogen bonds. The dyes AK3-7, AK3-5 and AK3-11 were selected as the most prospective amyloid probes.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3