Nitroxyl spin probe in ionic micelles: A molecular dynamics study

Author:

Abstract

The compounds containing nitroxyl radical (NO˙) are actively used as spin probes to examine colloid systems, including lipid membranes and micelles. Their electron paramagnetic resonance spectrum provides information about the composition of the medium, in particular, the content of water there. Yet, the proper treatment of the measurement results demands understanding the microscopic characteristics of the molecular probe. In the present paper, we extend our previous studies on the microscopic state of acid-base and solvatochromic probes in surfactant micelles to the field of spin probes. We report the results of molecular dynamics simulation of a common spin probe, methyl-5-doxylstearate, in micelles of anionic (sodium n-dodecyl sulfate, SDS) and cationic (n-dodecyltrimethylammonium bromide, DTAB) surfactants. The localization of the molecule within the micelles, its shape, composition of the local environment, hydration were quantified and compared with the available relevant experimental data. No significant dissimilarity was found in the characteristics of the probe molecule in both kinds of micelles. However, the characteristics of the O˙ atom carrying the unpaired electron are pronouncedly different, namely, in DTAB micelles it is less hydrated and forms less hydrogen bonds with water. Similar situation was observed for the COO group. The main reason was found to be the interactions with cationic surfactant headgroups, which screen the O˙ atom and COO group from water. These findings allowed revisit the point of view that the surface layer of DTAB micelles as a whole is less hydrated in comparison to that of the SDS ones.

Publisher

V. N. Karazin Kharkiv National University

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3