Quantitative analysis of micellar effect on the reaction rate of cationic triphenylmethine dyes with water according to Berezin’s model

Author:

Abstract

Several approaches quantitatively describe the effect of surfactant micellar solution on the reaction rate. The most used among them are Piszkiewicz’s, Berezin’s, and Pseudophase Ion-Exchange (PIE) models. The last-named was developed by Bunton and Romsted. Piszkiewicz’s model is based on representations of the micellization according to the mass action law with the formation of a catalytic micelle, which consists of some surfactant molecules and a substrate. In our previously paper, this model was used to explain the kinetic micellar effect on the reaction of cationic triphenylmethine dyes with water once again showed the main disadvantages of this approach. Berezin’s model is based on another model of micelle formation viz. the pseudophase model, and the binding of reagents by micelles is considered as the distribution of a substance between two phases. In this work, we aim to consider the applicability of Berezin’s approach for the interaction of malachite green and brilliant green cations with water molecule as a nucleophile in aqueous systems of nonionic, anionic, cationic, and zwitterionic surfactants. On the whole, Berezin's model performed well when applied to the description of the micellar effect on the reaction of similar dye with the hydroxide ion. However, it was revealed that this model does not take into account the change in the local concentration of the HO– ions due to a compression of the double electric layer upon addition of reacting ions to the system, as well as the constant of association of the HO– ions with cationic head groups of surfactant. In this case, when water is used as a nucleophile, the question of the degree of nucleophile binding can be solved differently. The PIE model is also based on a pseudophase model of micellization, but a substrate binding by micelles is considered as an association in a stoichiometric ratio of 1:1, and a nucleophile concentration is expressed in a local concentration based on the neutralization degree of micelles. Given the latter, its approach cannot be applied to the kinetic micellar influence on the reaction of cationic triphenylmethine dyes with water.

Publisher

V. N. Karazin Kharkiv National University

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3