Temperature-salt stress increases yield of valuable metabolites and shelf life of microalgae

Author:

Chernobai N. A.1ORCID,Kadnikova N. G.1ORCID,Vozovyk K. D.1ORCID,Rozanov L. F.1ORCID,Kovalenko I. F.1ORCID,Kot Y. G.2ORCID

Affiliation:

1. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

2. V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

Background: Microalgae are very important for production of some chemicals industrially, such as carbohydrates, peptides, lipids, and carotenoids. There are many ways by which the yield of the valuable chemicals can be improved. They may include the reduction of cultivation temperature and change in the composition of growth media. Objectives: study adaptive mechanisms of Dunaliella salina Teodoresco and Chlorococcum dissectum Korshikov to low temperature and to develop the method for their hypothermic storage. Materials and methods: The objects of research were unicellular green microalgae D. salina and Ch. dissectum. Cold adaptation (for 24 hours) and hypothermic storage (for 3–30 days) of cultures were performed at 4 °C without lighting. Light and confocal microscopy methods were used to determine the viability and pigment composition of cells. The Alamar Blue (AB) test was used as an express method for assessing the metabolic activity of cells before and after cold adaptation. Results: The study has showed that lowered cultivation temperature and increased salinity of the growth medium increase the fluorescence of the NR dye in D. salina cells and do not affect this indicator in Ch. dissectum. The 24 h exposition at 4 °C does not lead to a significant decrease in the relative fluorescence units according to the AB test. Storage the algae at 4 °C does not result in their loss of viability and motility for up to 30 days. Conclusions: Incubation of D. salina at 4 °C for 24 hours increase carotenoid production compared to the intact culture, while it has no effect on Ch. dissectum, regardless of the growth medium composition. The short-term effect of low temperatures does not lead to a significant decrease in the metabolic activity of D. salina and Ch. dissectum. Storage of museum collection of D. salina and Ch. dissectum is possible for a period of 30 days at 4 °C without significant loss of metabolic activity, motility and cell concentration. These results also demonstrate that a combination of high salt and low temperature stresses increase the yield of valuable metabolites.

Publisher

V. N. Karazin Kharkiv National University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Molecular Biology,Modeling and Simulation,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3