A small gain theorem for finite-time input-to-state stability of infinite networks and its applications

Author:

Pavlichkov Svyatoslav1ORCID

Affiliation:

1. Technical University of Kaiserslautern, Kaiserslautern, Germany

Abstract

We prove a small-gain sufficient condition for (global) finite-time input-to-state stability (FTISS) of infinite networks. The network under consideration is composed of a countable set of finite-dimensional subsystems of ordinary differential equations, each of which is interconnected with a finite number of its “neighbors” only and is affected by some external disturbances. We assume that each node (subsystem) of our network is finite-time input-to-state stable (FTISS) with respect to its finite-dimensional inputs produced by this finite set of the neighbors and with respect to the corresponding external disturbance. As an application we obtain a new theorem on decentralized finite-time input-to-state stabilization with respect to external disturbances for infinite networks composed of a countable set of strict-feedback form systems of ordinary differential equations. For this we combine our small-gain theorem proposed in the current work with the controllers design developed by S. Pavlichkov and C. K. Pang (NOLCOS-2016) for the gain assignment of the strict-feedback form systems in the case of finite networks. The current results address the finite-time input-to-state stability and decentralized finite-time input-to-state stabilization and redesign the technique proposed in recent work S. Dashkovskiy and S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems and their application for stabilization, Automatica. – 2020. – 112. – 108643, in which the case of $\ell_{\infty}$-ISS of infinite networks was investigated. The current paper extends and generalizes its conference predecessor to the case of finite-time ISS stability and decentralized stabilization in presence of external disturbance inputs and with respect to these disturbance inputs. In the special case when all these external disturbances are zeroes (i.e. are abscent), we just obtain finite-time stability and finite-time decentralized stabilization of infinite networks accordingly.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3