Abstract
Cuantificar la biodiversidad es clave para la conservación de los recursos naturales; sin embargo, la recolección de datos puede llevar mucho tiempo y resultar costosa. Dado que los datos climáticos y de teledetección ayudan a la predicción de la diversidad de especies, el objetivo de este estudio fue analizar la relación entre datos climáticos y el Índice de Vegetación de Diferencia Normalizada (IVDN) con la diversidad arbórea, en un bosque templado del Norte de México. Se calculó la riqueza de especies (S), los índices de diversidad de Simpson (1-D) y de Shannon (H) en 663 sitios de muestreo. Posteriormente se realizó un análisis de regresión exploratoria para obtener modelos de regresión que expliquen la relación de los índices de diversidad de árboles con el IVDN, los datos climáticos y el número de árboles. El mejor modelo de cada índice de diversidad y sus variables predictoras se integró en un modelo de Regresión Ponderada Geográficamente (RGP). Los resultados mostraron que la relación de los índices de diversidad y las variables predictoras varía a través del espacio. Las variables registraron mayor potencial de predicción en la zona Norte y Noroeste del área de estudio. El IVDN fue la variable de mayor influencia relativa en la explicación de los índices de diversidad, por lo que puede funcionar como sustituto de factores asociados con la diversidad arbórea.
Publisher
Revista Mexicana de Ciencias Forestales
Reference39 articles.
1. Aceves-Rangel, L. D., J. Méndez-González, M. A. García-Aranda and J. A. Nájera-Luna. 2018. Potential distribution of 20 pine species in Mexico. Agrociencia 52:1043-1057. https://www.scielo.org.mx/pdf/agro/v52n7/2521-9766-agro-52-07-1043.pdf. (10 de agosto de 2024).
2. Amatulli, G., S. Domisch, M.-N. Tuanmu, B. Parmentier, … and W. Jetz. 2018. Data descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific data 5:1-15. Doi: 10.1038/sdata.2018.40.
3. Arekhi, M., O. Y. Yılmaz, H. Yılmaz and Y. F. Akyüz. 2017. Can tree species diversity be assessed with Landsat data in a temperate forest? Environmental Monitoring and Assessment 189:1-14. Doi: 10.1007/s10661-017-6295-6.
4. Balvanera, P. and E. Aguirre. 2006. Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica 38(4):479-491. Doi: 10.1111/j.1744-7429.2006.00161.x.
5. Brunsdon, C., A. S. Fotheringham and M. E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28(4):281-298. Doi: 10.1111/j.1538-4632.1996.tb00936.x.