How Does the Use of Artificial Intelligence Reflect on Business Administration and Management? A Perspective on Knowledge Production at the Postgraduate Level

Author:

Gerçek Merve1ORCID,Erkin Hüsna Gül1ORCID

Affiliation:

1. KOCAELİ ÜNİVERSİTESİ, HEREKE ÖMER İSMET UZUNYOL MESLEK YÜKSEKOKULU

Abstract

Objectives: The extensive adoption of AI applications in many industries raises concerns over their potential to significantly transform employment in various aspects, including job creation, automation, and decision-making procedures. The impact that AI has on employment dynamics presents an array of obstacles and opportunities for the fields of business administration and management. Given all these advancements, the present study conducts a thorough examination of postgraduate theses, recognizing them as a systematic representation of the expanding influence of AI in the fields of business administration and management. Postgraduate research, which entails a thorough academic investigation, provides a crucial perspective for understanding the present condition and future course of AI use in business environments. Through an in-depth examination of postgraduate theses, this research attempts to reveal trends in the application of AI technologies in various organizational contexts. Design/methodology/approach: The 73 master's and doctoral theses used in this study were obtained from the repository of the Council of Higher Education National Thesis Center. The sample spans a range of institutions, demonstrating the diversity and depth of AI research across the academic landscape of management studies. To comprehensively examine and understand the information categories encompassed in these theses, the research utilizes two techniques: document analysis and descriptive content analysis. Document analysis systematically examines the theses as data sources, enabling a thorough investigation of the material that focuses on the identification, assessment, and synthesis of information pertaining to AI in business administration and management. Descriptive content analysis classifies and facilitates a methodical examination of the data. The distribution of theses subjected to document analysis was based on thesis type, universities and sub-disciplines, publication year and language, sample characteristics, methodology, theories, AI application areas, and keywords. Results: The findings show that studies on AI have gained momentum in the last four years, with a high percentage of theses focusing on management, organization, and marketing. The quantitative research method has been the most preferred for postgraduate theses. Additionally, human resource management, machine learning, and artificial neural networks constitute most of the research focus. The data indicates that most master's theses concentrate on human resource management and marketing. The finance and information technology sectors are predominant in terms of industry focus. Practical implications: The findings have the potential to significantly assist practitioners in understanding the ongoing research on AI, enabling them to align their strategic planning with the latest discoveries and approaches in higher education. The prevalence of machine learning and artificial neural networks signifies an inclination towards increasingly complex AI implementations within organizations. Organizations may leverage this understanding to increase innovation, enhance decision-making procedures, and sustain a competitive advantage through the implementation of cutting-edge AI. Furthermore, this study can assist researchers, such as master's and doctoral students, with the topic, research question, data source, data collection tool, and analysis type selection in future studies. Originality/value: The study is expected to provide insights into research focus, scope, and methodology for future research by revealing the current state of AI research in business administration and management domains in Turkey. Through the examination of postgraduate theses, this study not only highlights the increasing academic attention towards AI but also establishes a foundation upon which subsequent research can be built. This study represents an initial effort to gain deeper insights into AI research in Turkey, specifically focusing on knowledge production within universities.

Publisher

Journal of Behavior at Work

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3