ПРОГНОЗУВАННЯ ІНФОРМАЦІЙНИХ ТРЕНДІВ КІБЕРАТАК ЯК ІНСТРУМЕНТ ПРОТИДІЇ ВРАЗЛИВОСТЕЙ В ЕКОНОМІЦІ

Author:

Яровенко ГаннаORCID,Солярова КатеринаORCID

Abstract

Дана стаття присвячена питанню прогнозування інформаційних трендів кібератак за допомогою побудови авторегресійних моделей. Розрахунки проводилися на основі даних Google Trends для соціальної інженерії, DoS-атак та атак на паролі користувачів за період з 28.01.2018 по 22.01.2023. Проведений тест Харке-Бера та аналіз гістограм розподілу встановили необхідність логарифмування даних соціальної інженерії та атак на паролі користувачів. Розширений тест Дики-Фулера підтвердив стаціонарність рядів соціальної інженерії та DoS-атак. Декомпозиція трендів виявила наявність сезонної компоненти для соціальної інженерії та атак на паролі користувачів. В результаті для DoS-атак побудовано ARMA-модель, для інших рядів – SARIMA із сезонною та авторегресійною компонентами. Тести верифікації залишків та прогнозів виявили задовільною модель для DoS-атак, соціальної інженерії – високого рівня, хоча із наявною автокореляцією залишків для сезонного лагу, для атак на паролів користувачів – високого рівня, але із наявною гетероскедастичністю залишків.

Publisher

Publishing House Helvetica (Publications)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3